
NOTATION 

x, y, Cartesian coordinates; ~, transformed coordinate; u, v, velocity components; h, 
enthalpy; p, density; a, concentration; Z, relative velocity; T, ~, relative enthalpy; O~ 
relative density; ~. ~. boundaries of jet; 1 , l~, 1 , I , mixing lengths; a, mixing-length u ~ p ~ 
constant; Cp, specific heat at constant pressure; R, gas constant; ci, integration constant. 
The subscript H refers to the outer and 0 to the inner boundary; < >, average value. 
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A FLAT JET IN A GRANULAR BED OF FINITE HEIGHT 

Yu. A. Buevich, N. A. Kolesnikova, and S. M. Ellengorn UDC 532.546.6 

The distribution of gas flows in the vicinity of the jet is discussed and the condi- 
tions of disruption of the static equilibrium of the bed, the formation and growth 
of a cavity, and the jet breakthrough of the bed are investigated qualitatively. 

In the blowing of gas into a granular bed through an opening in its base one can dis- 
tinguish three main modes of spread of the gas jet differing in a qualitative respect [I]. 
At low flow rates ordinary gas filtration occurs without disruption of the continuity of the 
bed. With an increase in the flow rate above some critical value, depending on the physical 
parameters of the particles and the gas, the size of the opening, and the geometry of the bed, 
the initial static equilibrium of the bed is disrupted: Near the orifice of the jet a cavity 
forms with a relatively small number of particles circulating in it, surrounded by granular 
material which is motionless as before~ whose size grows with a further increase in the flow 
rate~ When the flow rate exceeds some new critical value the equilibrium of the bed with 
the cavity also becomes impossible: The jet "breaks through" the bed with the establishment 
of a steady regime of the type studied in [2]. 

The pattern described also reflects the initial stages of development of a fountain 
in spouting beds, discussed in [3, 4], for example. The formation and growth of the cavity 
are analogous to the appearance and development of the "initial channel" in the mode of 
"internal" spouting [5, 6], as well as to the partially fluidized lower part of a granular 
bed in trough and conical apparatus [6-8]. The jet breakthrough of a bed is equivalent to 
this initial channel breaking through the entire bed and to the onset of a true spouting 
mode. In this case the critical values of the flow rate mentioned above correspond to the 
first two critical spouting velocities introduced in [9]. 

The theoretical analysis of the spread of a jet in a granular bed with disruption of the 
continuity of the latter and the analysis of the conditions of interchange of the above- 
indicated modes require the joint solution of two very complicated problems with an unknown 
boundary. First of all, we need to find the distribution of the hydraulic forces acting on 
the stationary granular material in the vicinity of the cavity on the part of the filtering 
gas in it, for which we must solve the filtration problem (nonlinear in the general case) 
on the distribution of gas flows in the bed. In addition, we must study the static equilib- 
rium for a given distribution of hydraulic forces, and the unknown shape of the cavity must, 
in principle, be determined in the course of, such an investigation. A rigorous solution of 
these interconnected problems is scarcely possible at present. Therefore, they are analyzed 
below with a number of simplifying assumptions only for a plane bed unbounded in a horizontal 
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direction. In this case methods developed earlier in [I0] are used to solve the first probl~ 

while the results of [ii] are used for the second. The unification of the different 
methods of [i0, ii] is thereby achieved and the possible paths for the analysis of the com- 
plicated problems arising in the investigation of the conditions for the onset of spouting 
in apparatus of the most varied form become clearer. 

Below we assume that the same basic assumptions as in [i0] are satisfied, i.e., we 
assume that the porosity of the bed near the cavity can be considered as uniform in a first 
approximation, while the hydraulic resistance to the gas flow can be considered as linear 
with respect to the filtration velocity, i.e., we investigate only the linear problem of 
filtration theory. In addition, we neglect variations in the dynamic gas pressure along the 
cavity, which are considerably less than the variations in gas pressure within the granular 
material, while we model the cavity itself, as in [i0], with the help of a vertical profile 
x' = 0, 0~yr~h in the complex flow plane z' = x' + iy'. The latter allow us to be ab- 
stracted from superfluous detailing of the shape of the cavity in the given stage, charac- 
terizing it by a single parameter, the height h, whose connection with the gas flow rate and 
the height of the granular bed is given below. 

Under the adopted assumptions we obtain the following problem for the gas pressure 
within the bed (cf. [i0]): 

Ap O, Op -- ~h~~ = 0), = - -  = 0  ( x = 0 ,  I<y<~H), Op 
ax @ ( l )  

p=po>O ( x = 0 ,  0~<y~<l) ,  p = 0  (y = H ) .  

Here we use dimensionless coordinates, introduced with a scale h, Po is the constant pres- 
sure inside the cavity, whose connection with the parameters of the problem is also deter- 
mined below, and u ~ is the velocity of gas filtration in the bed undisturbed by the jet; the 
pressure above the bed is taken as the zero pressure reading. We note that in the case when 
u ~ is greater than the minimum fluidization velocity the problem (i) describes the distribu- 
tion of gas flows near a jet introduced into a fluidized bed of finite height when the veloc- 
ity of particle motion of the dense phase of the bed is neglected in comparison with the 
gas velocity [i0]. 

As in [i0], we introduce the velocity potential 

P--P~ , p~176 u = u ~  v = v %  (2) 

for which we obtain from (i) the problem 

Acp= 0, 0__~ = 0  ( x = 0 ,  t < y ~ H ) ,  0.__~ = 0  (y--O), 
Ox Oy 

= - - %  + u ~  (x=O, O <~g~< l), ~ = O  ( y =  H), % =  po/ah. 

(3) 

In view of the symmetry of the problem (3) 
sider only the situation in the half-sheet x~O, O~y~H. This half-sheet of the plane 
z = x + iy is mapped conformally onto the upper half-plane of the plane ~--~-iN~-- by the 
analytical function 

it is clear that it is sufficient to con- 

(4) 

with the points iH, i, and 0 of the z plane changing into the points --I, ~=cos (~/H), and 
1 of the ~ plane, respectively. 

Introducing the complex potential ~ = ~ ~i~ and its derivative F(~) = d~/d~, we 
obtain, by analogy with [i0], the following problem for the analytical function F(~): 

0, --oo<~-- I, 

Re F (;) = [ (~), ~ ~< ~ ~< I, n = 0, B = cos -fi-~- 
H ' 

(5) 

1283 



where 

~< <g< oo, O, I m F ( ~ ) = O ,  - - 1 <  ~, 1 ~]= 

O~ _ O~ Oy u~ 
f(~) = -0~ --Oy O~ g | f l _ -_ -~2  ' P ~  1, n O. ( 6 )  

The function F(5) must be finite everywhere except, possibly, for the points ~ = B and ~ =i 
of the real axis of the ~ plane, where ~(~) is finite. 

The solution of the Hilbert problem (5) can be represented with the help of the Kel- 
dysh--Sedov equation [12] for any value of u 0. Here we will investigate in detail only the 
jet flow in a stationary unventilated bed, when u ~ = 0 and u = v. Replacing the limit-~ 
of variation of ~ in the first equation of (5) by--a, where a is some large positive num- 
ber, and using the standard procedure [12], we obtain 

, .  r (c 
F(~) ~ - l V ( ~ + a ) ( ~ - ~ ) ( ~  - 1 )  ' I/ ) = Jim - - - - - ~ - - 6  ~ 4 - F ( o o )  = C [ ( ~ _ l g ) ( ~ 2  i ) ] -~ /2 .  (7) 

The term containing F(~) vanishes, since in the transition to the limit in (7) the quantity 
F(~) must remain finite, which is possible only when F(~) = 0, while the constant C' must be 
taken as equal to zero because the function ~(~), which represents the integral of F(~) by 
definition, must be finite at large ~. For the complex velocity U = u x -- iUy we have from 
(4) and (7) 

d ~  d ~  d~ ~C / ch  az ~ 1 ~-1/2 (8)  
U (z) -- dz d$ dz H ~ --~ --cos ~ / �9 

The expressions for the components of the gas-filtration velocity are easy to obtain by 
introducing the real and imaginary parts into (8); they are not presented here due to their 

awkwardness. 

The constant C can be determined in two ways. Integrating Uy = --lm U(z) over dy along 
the segment x = 0, l<y~H and using (2) and (3), we obtain 

% - -  

H 

dy = v" 2 CK cos 
H H H ,  

1 

(9) 

where K(t) is a complete elliptic integral of the first kind. Then, integrating u x = Re U(z) 
over dy' = hdy along the segment x = 0, 0~y~1 and equating the result to half the flow 

rate Q, by analogy with [i0] we have 

1 

--  cos - - - - -  cos dy =1/-2 ChK sin . (10)  
2 H .  ~ H H 

0 

From (9) and (i0) we obtain alternative representations for C: 

% ') c -  
\ 2/4 

Q K-I (sin ~ )  (ii) 
2 V -h " 

Comparing these representations and using the definitions of Po and ~0 in (2) and (3), we 
obtain an equation connecting the flow rate of the jet and the pressure inside the cavity: 

aQ K cos sin �9 (12)  P o =  2 

Performing the limiting transition H + ~, z/H § 0 in (8) and (ii), we arrive without 
difficulty at the equations for the jet flow in an unventilated granular bed of large height, 
obtained earlier in [i0]. The situation when H § ~ but z/H is different from zero corresponds 
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Fig. i. Dependences of vertical component F of dimensionless 
filtration velocity at the exit from the bed (Y = i) at dif- 
ferent T and at different levels Y in the bed at T = 0.5 (a), 
and field of isotachs F = const at T = 0.25 and 0.5 (b) 

to jet flow in a bed of finite height whose continuity is not disrupted. 

To investigate the influence of the height of the cavity on the gas distribution in a 
bed of fixed height it is convenient to introduce the new coordinates 

X l x' x 

In these coordinates the dimensionless height of the jet is obviously equal to T = H -~, the 
upper surface of the bed corresponds to Y = i, and Eqs. (8) and (ii) have the previous form 
with the replacement of z/H by Z = X + iY. Profiles of the vertical component F = Uy/Uo 
of the dimensionless velocity at different levels in the bed and isotachs F = const corres- 
ponding to two values of T are presented in Fig. I; we introduce the velocity scale 

U o = ~QI2 | / 2 H h .  (14) 
The curves of Fig. i reflect the "focusing" of the gas stream as the height of the 

cavity increases: The main mass of gas tends to exit into the space above the bed along the 
path of least resistance (X~0) the more strongly, the greater the relative height T of the 
cavity. If the latter is comparable with unity, then the flow pattern differs very consider- 
ably from the pattern of "radial" outflow from a jet source in some angle O~x, discussed 
in [8, ii], for example. 

The predominant flow of gas through the region of the bed lying directly above the cavity 
leads to a relative increase in the hydraulic force acting on the particles in this region, 
and thereby facilitates the disruption of the continuity of the bed, accompanied by the 
gradual growth of the cavity, and the jet breakthrough of the bed. 

For a semiquantitative description of these effects (with the aim of the maximum sim- 
plification of the computations)we replace the true complicated distribution of gas veloc- 
ity by a simpler one which correctly reflects the character of the variation of the flow 
with�9 increase in the cavity in a qualitative respect. To wit, let us consider a simple 
flow field with a vertical component of filtration velocity assigned by the equation 

I. (1.5) 

where % is a parameter playing the role of the effective spreading angle of the jet. For 
X = 0, Eq. (15) describes the flow occurring under conditions of radial spreading. 

We determine the parameters e and k from a comparison of Eq. (15) with the equation�9 for 
the vertical component of the filtration�9 velocity at the upper boundary of the bed near the 
point located above the entrance opening. From equations presented above we have 

uu Y=,. ,x << ~1 2 V-2hHrCQ K -I (sin 2-T-) (l -t- cos ~T)-'/2 (1 41 1 @~2X2cos nTj �9 (16) 
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2 Fig. 2. Dependences of the effective 
spreading angle e and the parameter 
k s on the dimensionless height T of 
the cavity. 

Comparing (15) at Y = 1 with (16), for 0 and k 2 we obtain the equations 

(17) 

0--2]/-ZK ( s i n - ~ - ) ~  (1 -~- c o s g T )  1/2 , 

~z (18) 
k2-- 

4(! § cos~T)' 

which finally determine the "quasiradial" flow (15). 

We note that the angle O thus determined differs from ~ even for flow in a bed whose 
continuity is not disrupted at all (there is no cavity). In fact, as T § 0 we obtain ~ § 

2 < ~ from (17). The ~indicates, as one would expect, that the symmetrical radial spreading 
into the total angle accessible to the gas, even if it occurs in the depths of the bed, is 
considerably distorted near its upper boundary. The dependences of 0 and k s on T are pre- 
sented in Fig. 2. 

Now let us investigate the static equilibrium of a granular bed containing a cavity and 
find the critical values of the flow rate QI and Q2, upon reaching which the initial plastic 
shear of the bed occurs (a cavity first forms) and its jet breakthrough is accomplished 
(static equilibrium ceases to be possible at all), respectively. For this purpose we use 
the method of [ii], approximating the distribution of the vertical component of the filtra- 
tion velocity by Eq. (15). Within the framework of the approximate model in [ii] we con- 
sider as the region of plastic shear a region, symmetric relative to the plane X = 0, with 
flat boundaries inclined to the vertical at an angle 4 ~ = arctan (i/~m) , where ~m = ~m (T) 
is the value of the parameter ~ achieving a minimum of the function t 

v ~ l ~ b - ? a v  1--T 2+b+~v 
G(T, v) ~2--k~/3 2 + b + av 1 -- T l+b+~v (19) 

Here k s is defined in (18) while a and b are coefficients which depend on ~f--the angle of 
internal friction of the free-flowing material, calculated in [ii]. In this case in the 
notation adopted here the equation connecting the value of u, the quantity ~ or Uy at X = 0 
and Y = i, with the characteristic dimensionless height T of the cavity is written in the 

form 

u = u.G(T,  v.~), u .  = (1 - -  e)7/or (20) 

where u, is the minimum fluidization velocity. The corresponding values of the flow rate 
Q for u can be determined from (20) using an equation which follows from (16), for example. 
As a result, we have an expression for the dimensionless flow rate q at which a granular bed 
containing a cavity with a height T is in a state of static equilibrium: 

TWe note the difference between the designations in this report and in [ii]. The dimension- 
less height z of the cavity, consisting of the ratio of its dimensional height to the height 
of the bed above the cavity, was introduced in [ii]. Therefore, z = T(I -- T)-: The substi- 
tution of this expression into the corresponding equation in [ii] leads to (19). 
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Fig. 3. Dependence of angle ~o of inclination of 
boundaries of the region of plastic flow (a) and of 
dimensionless flow rate q (b) on the parameter T. 
Curves 1-3) model with b # 0 for different ~i equal 
to 30, 45, and 60 ~ respectively; curve 4) model with 
b = 0 for ~i = 30 ~ Arrows mark a discontinuous change 
in the state of the bed and dashes correspond to un- 
realized states. 

Q 2V-_~-K/sin2~}/~,rx (1 +cos~r ) l /2G(T ,  %~). 
q = u , h H -  r~ 

The pressure drop in the bed is obviously determined by Eq. (12). 
ducing H = T -x, for the dimensionless drop Ap we have 

(21) 

Using (21) and intro- 

h p - -  o~u,hHP~ __1__ K2 (cos-~-)K -1 (sin~-) q(T). (22) 

Concrete calculations of the quantities 4 ~ , q, and hp were made in accordance with two 
models proposed in [ii]. In the first of them one takes b = 0, while in the second one uses 
the dependence of b on ~f calculated in [ii]o In the case when the size of the angle 4 ~ is 
comparable with ~f , the first model is evidently preferable (see [ii]); when ~o<<~f, how- 
ever, one can expect that the second model will give better results. The dependences of ~ ~ 
on ~i at three values of T and b # 0 are presented in Fig. 3a and one of the curves cor- 
responding to the model with b = 0 is also shown there. It is seen that the region of plastic 
shear, which converts the bed into a new state of static equilibrium with a higher cavity upon 
a small increase in q, narrows considerably as the cavity grows. 

The corresponding dependences of the quantity q on T are presented in Fig. 3b. The 
first critical value ql of this quantity, at which the continuity of the bed is first dis- 
rupted, is determined by the points of intersection of these dependences with the ordinate 
axis. In this case, when the angle of internal friction is large enough, a cavity with a 
finite height T~ forms at once in the bed: The discontinuous transition from a state in 
which the continuity of the bed is not disrupted to a state of equilibrium with such a cavity 
is shown by an arrow in Fig~ 3b. With a further smooth increase in the flow rate the height 
of the "equilibrium" cavity increases monotonically until the "maximum" value T2 is reached, 
which gives a maximum q2 of the corresponding curve q(T) in Fig, 3b. When the flow rate (21) 
exceeds the value q2 the state of static equilibrium proves to be impossible at all, and the 
instantaneous jet breakthrough of the bed occurs; states corresponding to the section of the 
q(T) curve to the right of the line T = T2 are not realized in practice. 

If the flow rate is smoothly decreased, starting with some state of static equilibrium 
with a cavity, then the height of the cavity will decrease monotonically until the "minimum" 
value T~ < TI giving a minimum of the curve q(T) is reached. After this the bed abruptly 
recovers its continuity -- the cavity disappears (also marked by an arrow on one of the curves 
of Fig~ 3b)~ Thus, the variation in the state of the bed in the region of O~T~T~. is 
characterized by a kind of hysteresis, resembling the hysteresis in processes of dry friction~ 
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Fig. 4. Dependences of dimensionless 
pressure drop Ap on T with To = 0.05; 
curves 1-4) see Fig. 3. The curves 
break Off at T = T2. 

e.g., when the static coefficient of friction is higher than the dynamic one. 

In the region of q < ql the pressure drop in the bed is proportional to q, with the 
proportionality factor going to infinity as T § 0, as is easily seen from (12) or (22). 
Actually, the quantity T is never equal to zero: In a granular bed without a cavity it 
takes a finite value To characterizing the size of the opening through which the jet escapes. 
When the initial packing of the bed particles is free-flowing, To is also determined by 
processes of overpacking of particles near the orifice of the jet with an increase in the 
flow rate. In the region of ql < q <2 the quantity Ap varies in accordance w~th (22), in 
which q is considered as a function of T defined implicitly by Eq. (21) or by the curves of 
Fig. 3b. As is easy to see, at q = q2 the value of Ap characterizes the pressure drop at the 
moment of breakthrough of the bed. Dependences of Ap on T, obtained from (22) with To = 
0.05 and corresponding to the curve of q(T) in Fig. 3b, are presented in Fig. 4~ 

Thus, the analysis conducted provides a physical understanding of the complicated pro- 
cesses accompanying the change in the state of the bed and its disruption under the action 
of the filtering flow, and the conclusions following from it and involving both the charac- 
ter of this change with a change in the flow rate and the dependence of the pressure drop 
on the flow rate are confirmed, in a qualitative respect, by the entire complex of experi- 
mental data accumulated in the investigation of jet flows in granular beds [i], the mechanism 
of fluidization in conical apparatus [7, 8], and the development of a fountain in different 
types of spouting beds [3-6, 9]. 

Further supplementarywork is needed, however, for a more exact quantitative description 
of these processes under different conditions and the construction of the corresponding engi- 
neering methods of calculation. The analysis presented is inadequate in this respect, of 
course. Moreover, the point here is not only that approximateequations are used for the filtra- 
tion velocity, the hydraulic resistance is assumed to be linear with respect to this velocity 
and the porosity to be uniform, the boundaries of the region of plastic shear are taken a 
priori as plane (or as conical in the axisymmetric case [ii]), and the jet is modeled by a 
profile in the plane of flow for which the connection of the height with the true geometry 
of the cavity is unclear, generally speaking, but also that the bulging of the material at 
the free surface of the bed above the cavity, which affects the gas distribution, processes 
of overpacking and consolidation of the particles, the effective value of the angle of inter- 
nal friction, etc., are not taken into account. 

Further progress primarily requires the setting up of more-delicate tests specially 
directed both at the quantitative testing of the conclusions following from the model in 
[ii] and the present report, particularly at the choice between the two variants of this 
model, and at the refinement of the model itself and the creation on its basis of simplified 
calculating schemes, which would possibly contain some empirical constants admitting of a 
simple experimental determination. 

NOTATION 

a, b, functions calculated in [ii]; C, C', constants in (7); F, derivative of the com- 
plex potential; f, function in (6); G, function, defined in (19); H, dimensionless height of 

1288 



bed; h, height of cavity; k, coefficient introduced in (15); p, po, pressure inside bed 
and in cavity; Ap, dimensionless pressure drop; Q, q, dimensional and dimensionless jet flow 
rates; q:, q2, critical values; T, dimensionless height of cavity; To, TI, T~, T2, charac- 
teristic values of T; u, v, filtration velocities; u ~ u,, initial filtration velocSty in 
the bed and minimum fluidization velocity; uo, velocity scale introduced in (14); u , veloc- 
ity scale introduced in (14); u*, velocity of fictitious flow defined in (15); U, complex 
velocity; Z = X + iY, z = x + iy, dimensionless coordinates; z' = x' + iy', dimensional 
coordinates; ~, coefficient of hydraulic resistance; B, parameter from (5); F = uy/uo; ~, 
specific weight of particles' material; ~, porosity; ~ = ~ + iq, coordinates in the plane 
obtained from z = x + iy as a result a of conformal transformation; ~ = tan-1~~ ~m, value 
of ~ giving a minimum of the function G; ~, ~! complex and real flow potentials; ~. angle 
of internal friction; @, stream function; ~o, angle of inclination of boundaries of the 
region of plastic flow to the vertical. 
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ANALYSIS OF THE PARAMETERS OF DISCRETE PARTICLE MOTION IN 

AXISYMMETRIC TURBULENT IMPINGING JETS 

V. I. Korobko, I. N. Malyi, L. N. Makarenko, 
V. K. Shashmin, and L. F. Bulgakova 

UDC 532.529 

The parameters of discrete particle motion in axisymmetric turbulent impinging 
air jets ar~ determined. 

The method of impinging jets is used extensively at the present time [i] to intensify 
the heat and mass transfer in technological processes and apparatus. Impinging air jets are 
quite efficient even for the preparation of concrete mixtures [2]. The self-:similar section 
of sand and cement particle acceleration with a quadratic drag law starting from the plane 
of the impinging jet is governing in the jet agitation of a concrete mixture. Because of 
the elastic strain of the air flux at sites of shock merger of the jet, and in the presence 
of inertial forces, the sand and cement particles from one jet penetrate into an other and 
are decelerated. These particles do not succeed in being accelerated in the opposite direc- 
tion since coaxiality of the nozzle sources is spoiled in the subsequent times because of 
the structural peculiarities of the continuous operation mixer for the preparation of con- 
crete mixtures [2]. 

Novopolotskii Polytechnic Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, 
Vol. 37, No. 5, pp. 813-817, November, 1979. Original article submitted January 29, 1979. 

0022-0841/79/3705-1289507.50 �9 1980 Plenum Publishing Corporation 1289 


